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A B S T R A C T

Dialogue-based language models mark a huge milestone in the field of artificial intelligence, by their
impressive ability to interact with users, as well as a series of challenging tasks prompted by customized
instructions. However, the prevalent large-scale dialogue-based language models like ChatGPT still have room
for improvement, such as unstable responses to questions and the inability to think cooperatively like humans.
Considering the ability of dialogue-based language models in conversation and their inherent randomness
in thinking, we propose ChatLLM network that allows multiple dialogue-based language models to interact,
provide feedback, and think together. We design a network of ChatLLMs, consisting multiple layers of language
models. Specifically, individual instances of language model may possess distinct perspectives towards the same
problem, and by consolidating these diverse viewpoints via a separate language model, the ChatLLM network
system can conduct decision-making more objectively and comprehensively. In addition, a language-based
feedback mechanism comparable to backpropagation is devised to update the outputs of the language models
within the network. This stratified system of interaction can be analogized to the relationship between leaders
and employees in a social organization, where collective decision-making often yields superior judgments
or resolutions. Experiments on datasets demonstrate that our network attains significant improvements in
problem-solving, leading to observable progress amongst each member.
1. Introduction

Large language models have attracted widespread attention in the
field of artificial intelligence because of their impressive ability to
solve natural language processing tasks. Dialogue-based large language
models, such as ChatGPT, in particular, have exerted a significant
impact on the development of society and have become an exemplar of
artificial intelligence applied to daily life, attracting extensive attention
from both academia and industry. It becomes extremely challenging to
distinguish them from humans, solely based on their speech style and
content.

Despite their impressive capabilities in interacting with humans
and handling various natural language processing tasks, dialogue-based
large language models like ChatGPT may still provide unsatisfactory
responses in certain conversational scenarios. This is because these
models are based on generative models that rely on statistical patterns
in the data they were trained on, rather than in-depth understanding or
true comprehension of the content. We observe two distinct aspects of
these unsatisfactory responses. The first aspect is instability, in which
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the answers can significantly vary despite the same context and prompt
being provided, as shown in Fig. 1.

The second is incomprehensiveness, as a single instance of model
may easily provide one-sided answers, failing to engage in collaborative
thinking for more comprehensive answers. The model’s responses show
stochastic fluctuations around the fact when faced with challenging
questions, so it is necessary to design an effective method to consolidate
multiple model outputs for balancing such variance (Wei et al., 2022b).

In this work, to address the above potential issues with a single
dialogue-based language model, we propose a multi-layer ChatLLM
network model to aggregate the viewpoints of other models layer by
layer, analogous to the social dynamics between leaders and employees,
where making decisions hierarchically and collectively can ultimately
enhance the overall performance. In particular, we first devise a for-
ward aggregation mechanism where the leader ChatLLM at higher layer
aggregates the lower-layer employee models’ outputs. Subsequently,
a language-based backpropagation mechanism is employed to learn
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Fig. 1. An example of instability of ChatGPT.

from their mistakes and improve their performance over time by in-
corporating feedback and updating their thinking processes. Moreover,
the dropout mechanism is introduced to regularize the inputs for each
ChatLLM model and thus prevent overfitting.

In addition, we do not necessarily require the models to use Chat-
GPT in the proposed network, as the entire network may become
stronger with the enhancement of ChatLLMs or with the use of differ-
ent types of ChatLLMs. The main contributions of this article can be
summarized as follows:

) We propose a novel multi-layer ChatLLM network which enables
multiple dialogue-based language models to interact, and hence
enhancing problem-solving abilities.

) In the proposed ChatLLM network, we design a forward aggregation
mechanism to consolidate the outputs. We also putforward a novel
language-based backpropagation algorithm to update the network.

) Experiments show significant improvements compared to the vanilla
ChatLLM model and simple ensemble model of ChatLLMs. As a
fundamental research, our study could provide valuable insights and
inspirations for synthesizing multiple ChatLLMs in future work.

2. Related work

2.1. Large language models

The introduction of the transformer model (Vaswani et al., 2017)
has made it possible to train large-scale unsupervised text data. In the
past few years, encoder-based models such as BERT (Devlin et al., 2019)
have demonstrated impressive capabilities in various natural language
processing (NLP) tasks. More recently, decoder-based models such as
GPT-1 (Radford and Narasimhan, 2018), GPT-2 (Radford et al., 2019),
and T5 (Raffel et al., 2020) have made even greater strides. As the
number of model parameters has increased, models like GPT-3 (Brown
et al., 2020), often referred to as large language models, have gradually
acquired zero-shot learning abilities, which have the capacity to gener-
ate responses based on instructions without requiring any examples.
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ChatGPT, also known as InstructGPT, is an advanced version of the
GPT-3 model, enhanced by instruction tuning (Wei et al., 2022a), and
reinforcement learning from human feedback (RLHF) (Bradley Knox
and Stone, 2008) (Ouyang et al., 2022). Unlike the original GPT-3
models, the InstructGPT models, after fine-tuning for user instruc-
tions, demonstrate a considerably enhanced capability to generate more
aligned and helpful outputs in response to user instructions.

2.2. Collaboration for LLM-based agents

In recent years, systems where various Large Language Model (LLM)
agents collaborate have exhibited remarkable performance in a multi-
tude of tasks. Within such systems, each agent is actively involved in
exchanging information via natural language (Guo et al., 2024; Xi et al.,
2023).

Cooperative multi-agent systems have gained extensive application.
A notable example is CAMEL (Li et al., 2023), which exemplifies a
successful dual-agent cooperative system. Within a role-playing com-
munication framework, agents assume the roles of AI Users and AI
Assistants. Furthermore, the AgentVerse (Chen et al., 2024) develops
a comprehensive and multi-task-tested framework that facilitates the
cooperation of group agents. It enables the assembly of an agent team
that can dynamically adjust to the complexity of the task at hand.
Meanwhile, MetaGPT (Hong et al., 2024) takes its cue from the classic
waterfall model in software development, formalizing the inputs and
outputs of agents as standardized engineering documents.

Additionally, it is increasingly acknowledged by researchers that
within LLM-based multi-agent systems, the emergence of beneficial
changes among agents can spontaneously arise through mechanisms
such as competition, argumentation, and debate (Irving et al., 2018).
SocraSynth (Chang, 2024) provides foundational insights into manag-
ing biases and eliminating hallucinations through contentious debates
among LLMs. In reasoning tasks, Du et al. (2024) propose the con-
cept of debate, allowing agents to incorporate feedback from their
peers. When these responses differ from the agent’s own judgments,
an argumentation process occurs, leading to more refined solutions.
Using role-playing, ChatEval (Chan et al., 2024) establishes a multi-
agent team of referees. Through self-initiated debates, these agents
evaluate the quality of the text produced by LLMs, achieving a standard
comparable to human evaluators.

2.3. Improving language models via feedback

Recently large language models (LLMs) have shown great potential
in improving their performance and generating high-quality text by
incorporating iterative feedback mechanisms. Madaan et al. (2023)
proposed SELF-REFINE, a network that leverages iterative feedback and
refinement to improve initial outputs from LLMs. The approach allows
a single LLM to generate an output, provide multi-aspect feedback
on its own output, and refine it based on the feedback, leading to
better results across a range of tasks. Press et al. (2023) investigated
the compositionality gap in GPT-3 models and presented the self-ask
method to enhance compositional reasoning. SelfCheck (Miao et al.,
2024) is a system that enables agents to assess and correct their reason-
ing at different points in the process. InterAct (Chen and Chang, 2023),
on the other hand, utilizes various language models in supporting
roles to assist the primary model in avoiding errors and inefficiencies.
Reflexion (Shinn et al., 2023; Wang et al., 2024) is designed to boost an
agent’s planning capabilities through comprehensive verbal feedback.
In this model, the agent initially takes an action that is informed by its
memory, followed by the evaluator providing feedback based on the
agent’s trajectory. Additionally, ChatCoT (Chen et al., 2023) leverages
feedback from an evaluation module that records the agent reasoning
steps to refine its reasoning capabilities.
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Fig. 2. Network architecture and forward process.
Fig. 3. Illustration of the forward-aggregation mechanism on digital mode classification.
3. ChatLLM network

In this section, we first introduce our model architecture (Sec-
tion 3.1). Then we describe the feedforward process (Section 3.2),
followed by the language based backpropagation mechanism (Sec-
tion 3.3). Lastly, we explain the drop-out mechanism as well as the
network optimization (Sections 3.4 and 3.5).

3.1. Network architecture

The ChatLLM network is a multi-layered dialogue-based language
model consisting of 𝑛− 1 fully connected layers and 1 final aggregation
layer, as depicted in Fig. 2. The models at layer 𝑖 are denoted as
𝒎𝑖,1,𝒎𝑖,2,… ,𝒎𝑖,𝑙𝑖 , where 𝑙𝑖 represents the number of models at layer
𝑖. Adjacent layers of models communicate with each other through a
leader–employee relationship, where the models at layer 𝑖 + 1 serves
as the leaders for the models at layer 𝑖. A dropout and concatenation
mechanism is applied after each fully connected layer. The last layer,
namely the aggregation layer, is comprised of one leader model 𝒎𝑛. It
takes the aggregated input from all previous layers and generates the
final output of our network.

3.2. Forward-aggregation mechanism

Unlike one standalone LLM, models in our network not only receive
the question information itself, but are also given answers generated
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by previous layers as references. This enables the subsequent layers
of models to identify the key highlights from the previous answers,
resulting in more comprehensive and precise responses. Such benefits
are highly applicable to many tasks such as dialogue generation. On
the other hand, the instability of large language models can also be
improved, as the integration of outputs from multiple members can
effectively offset deviations.

We can imagine a scenario when a leader and many employees
need to solve a problem. Each employee may have a unique perspective
and express different ideas, but ultimately a leader will consider these
ideas and make the final decision. Without considering the group’s
opinions, the decision would be arbitrary and imperfect. Analogously,
individual dialogue-based language models, such as ChatGPT, are in-
herently random because of its generative structures. Therefore, with a
leader evaluating the ideas generated by the employees and providing
guidance, an optimal outcome can be achieved.

We define 𝒎𝑖 as a dialogue-based language model, 𝒎𝑖𝑛
𝑖 as the input

of 𝒎𝑖, 𝒎𝑜𝑢𝑡 as the output of 𝒎𝑖, and 𝑄 represents the description of a
question to be solved. Generally, we use 𝒎𝑖𝑛

𝑖 and 𝒎𝑜𝑢𝑡
𝑖 to represent the

input and the output of 𝒎𝑖. ⊕ means concatenation operation. For one
leader 𝒎𝑖+1 and its 𝑖 employees 𝒎1,𝒎2,… ,𝒎𝑖, we have the following
representations:
𝒎𝑖𝑛

1 ,𝒎
𝑖𝑛
2 ,… ,𝒎𝑖𝑛

𝑖 = 𝑄,

𝒎𝑖𝑛
𝑖+1 = 𝑄 ⊕𝒎𝑜𝑢𝑡

1 ⊕𝒎𝑜𝑢𝑡
2 ⊕⋯⊕𝒎𝑜𝑢𝑡

𝑖 .
(1)

From Eq. (1), we can see that the input of each leader is composed of
the question and the output of his or her employees.
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Fig. 4. Backpropagation process.
Fig. 3 shows a detailed example of the forward-aggregation mecha-
nism on digital mode classification task.

3.3. Language based backpropagation algorithm

Traditional backpropagation algorithm calculates the gradients of
the loss function with respect to the weights of a neural network, and
utilizes these gradients to update the weights using an optimization
algorithm such as gradient descent. We design a novel language based
backpropagation algorithm to allow the ChatLLM network to learn from
the incorrect samples and improve its performance over time.

Similar to real-life scenarios, a leader is able to verify the correct
answer with their own earlier than their employees, in contrast to the
forward-aggregation process. If a leader finds incorrection, he or she
will give orders to each employee of him or her to modify their own
ideas. Taking into account these feedbacks, employees will enhance
their corresponding responses more effectively.

Algorithm 1 Language Based Backpropagation Mechanism
Input: {𝒎𝑖+1,𝑗}: dialogue-based large language models at layer 𝑖 + 1;

𝒎𝑖,∗: an employee model at layer 𝑖;
𝐴𝑛𝑠𝑤𝑒𝑟; 𝑃 𝑟𝑜𝑚𝑝𝑡.

1: for 𝑗 = 1 to 𝑙𝑖+1 do
2: 𝒎𝑖𝑛

𝑖+1,𝑗 ← 𝐴𝑛𝑠𝑤𝑒𝑟 ⊕ 𝑃 𝑟𝑜𝑚𝑝𝑡
3: input 𝒎𝑖𝑛

𝑖+1,𝑗 to 𝒎𝑖+1,𝑗 ;
4: output 𝒎𝑜𝑢𝑡

𝑖+1,𝑗 from 𝒎𝑖+1,𝑗 ;
5: end for
6: if 𝑛𝑜𝑡𝑚𝑎𝑡𝑐 ℎ(𝒎𝑜𝑢𝑡

𝑖,∗ , 𝐴𝑛𝑠𝑤𝑒𝑟) then
7: 𝒎𝑖𝑛

𝑖,∗ ← 𝐴𝑛𝑠𝑤𝑒𝑟 ⊕ 𝑃 𝑟𝑜𝑚𝑝𝑡
8: for 𝑗 = 1 to 𝑙𝑖+1 do
9: 𝒎𝑖𝑛

𝑖,∗ ← 𝒎𝑖𝑛
𝑖,∗ ⊕𝒎𝑜𝑢𝑡

𝑖+1,𝑗
10: end for
11: else
12: 𝒎𝑖𝑛

𝑖,∗ ← 𝐴𝑛𝑠𝑤𝑒𝑟 ⊕ 𝑃 𝑟𝑜𝑚𝑝𝑡
13: end if
14: input 𝒎𝑖𝑛

𝑖,∗ to 𝒎𝑖,∗;
15: output 𝒎𝑜𝑢𝑡

𝑖,∗ from 𝒎𝑖,∗;
16: return

We illustrate the language based backpropagation mechanism in
Fig. 4. Specifically, after the forward process, the final output of the
model will be compared with the ground-truth 𝐴𝑛𝑠𝑤𝑒𝑟. If the output is
correct, the model will get the prompt (𝑃 𝑟𝑜𝑚𝑝𝑡) ‘‘You guessed it right,
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remember your reasoning...’’ and preserve its original logic flow. If
it is incorrect, the model will get the prompt (𝑃 𝑟𝑜𝑚𝑝𝑡) ‘‘You guessed
it wrong. Please speculate a possible reason why the answer is this
and update your thinking’’. and enhance its logic optimization process.
Feedback is applied throughout all layers in the network, stabilize the
accurate models’ states, while adjust its surmise for closer alignment
with the correct output. One detailed feedback example of the language
based backpropagation process is shown in Fig. 5.

If the model 𝒎𝒊 outputs a wrong answer, it will get the following
feedback as input (as shown in the upper left in Fig. 5):

𝒎𝑖𝑛
𝑖 = 𝐴𝑛𝑠𝑤𝑒𝑟 ⊕ 𝑃 𝑟𝑜𝑚𝑝𝑡 ⊕𝒎𝑜𝑢𝑡

𝑖+1 ⊕𝒎𝑜𝑢𝑡
𝑖+2 ⊕⋯⊕𝒎𝑜𝑢𝑡

𝑛 . (2)

Otherwise, the model will get input (shown in bottom left in Fig. 5):

𝒎𝑖𝑛
𝑖 = 𝐴𝑛𝑠𝑤𝑒𝑟 ⊕ 𝑃 𝑟𝑜𝑚𝑝𝑡. (3)

The detailed algorithm is described in Algorithm 1. It is worth noting
that the system will establish a long-term memory for each model.
When the entire Language Based Backpropagation process is completed,
the output of each model for the question will be saved and referred to
when answering questions in the future.

3.4. Dropout mechanism

The capacity of an individual dialogue-based language model is
inherently constrained. By restricting the input to an appropriate range,
we can prevent these models from becoming inundated with an ex-
cessive amount of information. Additionally, the implementation of a
dropout mechanism in neural networks, as described in Srivastava et al.
(2014), has been shown to effectively reduce overfitting and enhance
generalization performance. Therefore we devise a dropout mechanism,
as described in Eq. (4).

Analogously, if a leader has too many employees, it may be difficult
for them to handle all of his or her employees’ ideas. Similarly, if an
employee has too many leaders, it may be challenging for them to
satisfy all of leaders. Therefore, based on the structure of the entire
network, we allow each dialogue-based language model to randomly
receive messages from only a limited number of other models, thus
ensuring that the overall input is controlled within a certain range.
Formally, to implement it, we calculate a random variable 𝑟 whose
value is 0 or 1:

𝑟 ∼ 𝐵 𝑒𝑟𝑛𝑜𝑢𝑙 𝑙 𝑖(𝜌), (4)

where 𝜌 is the rate of the number of selected models. Then the model
𝒎𝑖+1 receives selected messages from the sender models:

𝒊𝒏 𝒐𝒖𝒕 𝒐𝒖𝒕 𝒐𝒖𝒕
𝒎𝒊+𝟏 = 𝑟1 ⋅𝒎𝟏 ⊕ 𝑟2 ⋅𝒎𝟐 ⊕⋯⊕ 𝑟𝑖 ⋅𝒎𝒊 , (5)



R. Hao et al. AI Open 6 (2025) 45–52 
Fig. 5. A feedback example of the backpropagation process in digital mode classification task.
Fig. 6. Comparison of different models on accuracy along the intermediate stages.
where if 𝑟𝑖 = 1, 𝑟𝑖 ⋅ 𝒎𝒐𝒖𝒕
𝒊 equals 𝒎𝑜𝑢𝑡

𝑖 ; otherwise, 𝑟𝑖 ⋅ 𝒎𝒐𝒖𝒕
𝒊 is a null st-

ring.

3.5. Network optimization

During the training process, individual training examples are in-
putted sequentially. Inspired by the Stochastic Gradient Descendent
algorithm, we update the network with the language-based backprop-
agation mechanism for each training sample accordingly. To prevent
overfitting, we employ the early stopping technique. The stopping
criteria can be met by either of the two conditions: reaching a pre-
determined number of iterations, or the performance ceasing to show
further improvement.

4. Experiments

Due to the high cost of the GPT-4 API, we choose to use ChatGPT
or GPT-3.5-Turbo as the basic ChatLLM of our overall network. A
collection of models is supposed to learn from and refer to each other
when solving the prompted question. Noting that due to the input
limitation of GPT, we design a simple network structure of ChatLLMs
that does not exceed three layers, consisting of a few ChatLLMs.

We conducted three experiments to evaluate the network:First,
the Digital Mode Classification Experiment was crafted to discern the
model’s innate learning abilities from the pre-existing implicit knowl-
edge within a large language model, particularly its capacity to address
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problems in the absence of explicit rules among digits. Following
that, the Sentiment Reversal Experiment was designed to underscore
the network’s proficiency in bolstering performance in standard NLP
tasks, specifically examining its adeptness at comprehending and al-
tering emotional contexts through sentiment reversal tasks. Lastly, the
Arithmetic Reasoning Experiment served to gauge the efficacy of both
two-layer and three-layer ChatLLM networks on the GSM8K (Cobbe
et al., 2021) and AUQA-RAT (Ling et al., 2017) datasets, concentrating
on arithmetic reasoning. Experimental details are as follows.

4.1. Digital mode classification

The experiment aims to test ChatGPT’s learning ability from scratch.
In the digital mode classification task, we generate a dataset consisting
of different categories of digital vectors. Particularly, we categorize a
three-dimensional vector (𝑎, 𝑏, 𝑐) based on the position of the largest
dimension in the vector. For example, (1, 2, 4) belongs to category 3
because the largest number 4 is located in the third dimension. Since
ChatGPT has no pre-existing knowledge of the task, this provides an
opportunity to evaluate its inductive learning capability.

We use 24 samples for training, and conduct observations every 3
training samples. Thus we have 8 intermediate stages, wherein three
vectors are prompted to the ChatLLM network between stages. The test-
ing set comprises of 30 challenging samples that have been manually
designed, which are collectively fed into the model. The outputs are
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Table 1
Accuracy of different models at 8 intermediate stages.

1 2 3 4 5 6 7 8

ChatGPT-w/o FB 0.295
(±24.10%)

0.306
(±18.77%)

0.328
(±19.76%)

0.328
(±21.74%)

0.345
(±11.73%)

0.333
(±12.68%)

0.361
(±10.81%)

0.400
(±14.90%)

ChatGPT-refine(mean) 0.300
(±23.27%)

0.339
(±26.72%)

0.374
(±16.42%)

0.389
(±11.74%)

0.383
(±16.30%)

0.367
(±29.22%)

0.334
(±31.55%)

0.378
(±18.22%)

ChatGPT-ensemble 0.317
(±12.90%)

0.317
(±12.83%)

0.389
(±6.93%)

0.361
(±7.00%)

0.367
(±15.18%)

0.361
(±21.40%)

0.317
(±19.68%)

0.361
(±10.85%)

ChatGPT-mem (mean) 0.406
(±28.63%)

0.472
(±22.32%)

0.428
(±26.68%)

0.456
(±17.03%)

0.439
(±24.19%)

0.439
(±25.12%)

0.344
(±20.95%)

0.406
(±6.12%)

ChatGPT Network (leader) 0.478
(±19.03%)

0.528
(±13.48%)

0.417
(±16.55%)

0.461
(±9.63%)

0.483
(±16.74%)

0.433
(±17.54%)

0.400
(±7.38%)

0.383
(±14.28%)
-

a

i
t
a

o
C
C

s

the corresponding label for each vector. No feedback is involved in the
testing process.

For evaluation, we report the accuracy by checking if the categories
re consistent with the pre-defined rules. We compare our ChatLLM

network model with the following baselines:
ChatGPT-w/o FB: a vanilla ChatGPT takes the question and training

input vectors with categories as input without further feedback.
ChatGPT-refine: a vanilla ChatGPT takes the same input as ChatGPT

w/o FB, and if the answer is incorrect, we request it to refine the answer
with the instruction ‘‘refine your answer ’’

ChatGPT-ensemble: using simple voting mechanism and selecting
the most frequent answer amongst three individual ChatGPTs as the
consensus output.

Table 1 reports the average results of six times for all the mod-
els. From the table, we can observe that: (1) Our proposed ChatGPT
network, i.e., ChatGPT Network (leader) taking the leader output as
final output, significantly outperforms all the baselines. It demonstrates
he enormous advantages of the ChatGPT network in terms of forward
ggregation and backward feedback. (2) The mean output of the mem-

bers of our ChatGPT network, i.e., ChatGPT-mem (mean), also has a
significantly higher accuracy than that of the baselines, which validates
that the proposed ChatLLM network model can improve individual

hatLLMs in the network. (3) The variance of the ChatGPT Network
(leader) closely resembles that of the ChatGPT-ensemble, while lower
than other baselines. This indicates that the output of the ChatGPT
network is relatively stable, like the ChatGPT-ensemble baseline.

Fig. 6 illustrates the comparison of accuracy along the intermediate
tages. We can observe that our proposed ChatLLM network generally
chieves better results at all intermediate stages. We also find that the
ccuracy values of all the models consistently first increase to a peak,
nd then begin to decrease. This is due to the overfitting problem since
e observe that the models gradually increase the complexity of the

classification criteria after reaching the peak. Early stopping during the
training process is necessary to achieve the best results.

4.2. Sentiment reversal experiment

Sentiment reversal is a typical NLP task that rewrites a given sen-
tence by reversing its current sentiment (positive or negative) (Madaan
t al., 2023).
Dataset Generation. We generate a dataset comprising 60 emotion-

ally biased sentences, along with their corresponding sentiments, using
ChatGPT.

Experimental Setting. Our objective is to examine the efficacy of
he backpropagation feedback mechanism from leaders to employees
n our proposed ChatLLM network. We compare ChatGPT network with
n individual ChatGPT model. Note that there is no training process for
ll models in this experiment. We apply the backpropagation feedback
echanism during testing instead. Specifically, our experiments can be
ivided into two groups:
w/o FB: No backpropagation feedback is provided for any model in

this setting.
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Table 2
The results of sentiment reversal task.

Win Loss Tie

ChatGPT w/o FB 22 26 12
ChatGPT network w/o FB 26 22 12

ChatGPT w/ FB 7 53 0
ChatGPT network w/ FB 53 7 0

Fig. 7. Comparison of win times.

w/ FB: We direct both the baseline model ChatGPT and our Chat-
GPT network to augment the emotional intensity of the former output
sentences, with the feedback in the way of prompt ‘‘Make the emotion-
lly reversed sentences more emotionally intense’’. Under this setting, the

baseline model ChatGPT employs self-feedback, whereas the ChatGPT
network utilizes backpropagation for providing feedbacks and obtain-
ing new results. The final output of ChatGPT network is obtained by
another forward aggregation process based on new results.

Evaluation. Following Madaan et al. (2023), the evaluation process
ncorporates a separate ChatGPT as a judge, which is responsible for de-
ermining which group produced sentences with more intense emotions
nd gives the reasons. The scores assigned by the ChatGPT judge are

reported in Table 2 and Fig. 7. Each superior sentence earns one point
for the generating model. To ensure fairness and eliminate potential
biases in the ChatGPT judge’s scoring, we request the provision of a
rationale for each decision as illustrated in Table 3.

The results in Table 2 and Fig. 7 reveal that without feedback,
the ChatGPT network displays an marginally enhanced performance
compared to an isolated ChatGPT (baseline model), attributable to its
ability to summarize information. However, when feedback is applied,
ur ChatGPT network significantly outperforms the standalone baseline
hatGPT, showing the immense improvement of the feedback on the
hatGPT network’s performance.

In Table 3, two examples are provided to illustrate the ChatGPT
network’s results. As we can observe that compared to ChatGPT, our
proposed ChatGPT network can generate a sentence with reversal
entiment in higher emotional intensity of adjectives and in richer

vocabulary.



R. Hao et al.

m

t
A
q
w
s
a
d
l
f
o
c
r

l

G
T
m
t
s
3
c
n

C
a
t
t
a
r

AI Open 6 (2025) 45–52 
Table 3
Sentiment reversal examples. The original inputs are as follows. Example 1: This movie is interesting. Example 2: This journey is satisfying.

ChatGPT ChatGPT network Result Reason

Example1 This movie is incredibly
dull.

This movie is excruciatingly
dull.

ChatGPT network wins Both sentences express negative
emotions towards the movie, but
‘‘excruciatingly dull’’ implies a
stronger degree of negative feeling
compared to ‘‘incredibly dull.’’

Example2 This journey is completely
unfulfilling.

This journey is soul-crushingly
and utterly unfulfilling

ChatGPT network wins The addition of ‘‘soul-crushingly and
utterly’’ intensifies the negative
emotion of the sentence,making it
feel more impactful and powerful.
F
a
c
n

t
n

b

e
t

L

Table 4
Comparison of different models based on GSM8K and AUQA-RAT scores, with improve-

ent percentages compared to Zero-shot CoT.
Model GSM8K AUQA-RAT

Zero-shot CoT 0.745 0.579
2-layers Network (w/o FB) 0.804 (+7.92%) 0.594 (+2.59%)
3-layers Network (w/o FB) 0.814 (+9.26%) 0.610 (+5.35%)
2-layers Network 0.842 (+13.02%) 0.628 (+8.46%)
3-layers Network 0.867 (+16.38%) 0.639 (+10.36%)

4.3. Arithmetic reasoning experiment

In this experiment, we evaluated the performance of two-layer and
hree-layer ChatLLM networks on the GSM8K (Cobbe et al., 2021) and
UQA-RAT (Ling et al., 2017) datasets. GSM8K consists of 8.5K high-
uality mathematical problems, all of which are created by human
riters. These problems require 2 to 8 steps to solve, with the main

olution method being a series of basic calculations using fundamental
rithmetic operations to arrive at the final answer. The AQUA-RAT
ataset consists of about 100,000 algebraic word problems with natural
anguage rationales. Both of these datasets are common benchmarks
or arithmetic reasoning. The goal was to compare the performance
f different network architectures on arithmetic reasoning tasks. To
omprehensively assess the model performance, we used 2 arithmetic
easoning benchmarks for testing.

We compared the performance of GPT-3.5-Turbo in a zero-shot
chain-of-thought (CoT) setting and evaluated the two-layer and three-
ayer ChatLLM networks with and without feedback mechanism (FB).

The ChatLLM Network with two layers is composed of a stack of
PT-3.5-Turbo models, where the first layer consists of three GPT-3.5-
urbo instances, and the second layer comprises a single GPT-3.5-Turbo
odel. For the three-layer ChatLLM Network, the configuration is

iered with the first layer having three GPT-3.5-Turbo models, the
econd layer having two, and the topmost layer with just one GPT-
.5-Turbo model. This hierarchical structure allows for an increase in
omplexity and depth of processing as information moves through the
etwork. The experimental results are shown in Table 4.

Analysis and discussion. The experimental results indicate that the
ChatLLM network, even without the feedback mechanism, significantly
outperforms the baseline GPT-3.5-Turbo model on both datasets. No-
tably, the three-layer ChatLLM network achieved scores of 0.814 and
0.610 on the GSM8K and AUQA-RAT datasets, respectively.

With the feedback mechanism enabled, the performance of the
hatLLM networks improved further. The three-layer ChatLLM network
chieved the highest performance, with scores of 0.867 and 0.639 on
he GSM8K and AUQA-RAT datasets, respectively. This demonstrates
hat both increasing the number of network layers and incorporating
 feedback mechanism significantly enhance the model’s arithmetic
easoning capabilities.

These experimental results validate the effectiveness of the ChatLLM
network in handling arithmetic reasoning tasks. They also highlight
the potential for further performance improvements through structural
enhancements and the introduction of feedback mechanisms.
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5. Limitations

Due to the limited capabilities of current dialogue-based language
models, especially in processing large-scale numerical inputs, our net-
work may not demonstrate absolute superiority in certain scenarios.
urthermore, the absence of an efficacious communication mechanism
mong different dialogue language models precludes larger scales of
ollaboration, restricting our present research to few members of the
etwork.

6. Conclusion

In this work, we propose a novel ChatLLM network that allows
multiple dialogue-based language models to interact, provide feedback,
and think together. Specifically, individual instances of ChatLLM in the
network may possess distinct perspectives towards the same problem,
and by consolidating these diverse viewpoints via a separate ChatLLM,
the ChatLLM network system can conduct decision-making more objec-
tively and comprehensively. The optimization of the network is carried
out based on a novel language-based backpropagation mechanism.
We evaluate the network’s performance through experiments on three
asks, demonstrating the effectiveness and superiority of the ChatLLM
etwork.

While acknowledging the existence of limitations, such as the lack
of a unified mechanism for communication between the models, we
elieve that our research will serve as a foundational work to provide

valuable insights to guide future endeavor in the field. As part of our
ongoing efforts, we plan to develop and implement a global strategy
for assigning distinct identities to each model in the network, thereby
nsuring that each model performs its exclusive task and enhancing the
raceability of inter-model communication.

CRediT authorship contribution statement

Rui Hao: Writing – review & editing, Writing – original draft, Soft-
ware, Methodology. Linmei Hu: Writing – original draft, Supervision,
Methodology. Weijian Qi: Writing – original draft, Formal analysis.
Qingliu Wu: Formal analysis. Yirui Zhang: Writing – original draft.
iqiang Nie: Supervision.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This work was supported by the National Science Foundation of
China (No. 62276029), CCF-Zhipu. AI Large Model Fund (No. 202217),
Beijing Institute of Technology Research Fund Program for Young
Scholars, China (No. 6120220261), and CIPSC-SMP-Zhipu Large Model
Cross-Disciplinary Fund.



R. Hao et al. AI Open 6 (2025) 45–52 
References

Bradley Knox, W., Stone, P., 2008. TAMER: Training an agent manually via evaluative
reinforcement. In: 2008 7th IEEE International Conference on Development and
Learning. pp. 292–297.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Nee-
lakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A.,
Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D., Wu, J., Winter, C.,
Hesse, C., Chen, M., Sigler, E., Litwin, M., Gray, S., Chess, B., Clark, J., Berner, C.,
McCandlish, S., Radford, A., Sutskever, I., Amodei, D., 2020. Language models are
few-shot learners. In: Advances in Neural Information Processing Systems, vol. 33,
Curran Associates, Inc., pp. 1877–1901.

Chan, C.M., Chen, W., Su, Y., Yu, J., Xue, W., Zhang, S., Fu, J., Liu, Z., 2024. ChatEval:
Towards better LLM-based evaluators through multi-agent debate. In: The Twelfth
International Conference on Learning Representations.

Chang, E.Y., 2024. SocraSynth: Multi-LLM reasoning with conditional statistics. arXiv
Preprint, arXiv:2402.06634.

Chen, P.L., Chang, C.-S., 2023. InterAct: Exploring the potentials of ChatGPT as a
cooperative agent. arXiv Preprint, arXiv:2308.01552.

Chen, W., Su, Y., Zuo, J., Yang, C., Yuan, C., Chan, C.M., Yu, H., Lu, Y., Hung, Y.H.,
Qian, C., Qin, Y., Cong, X., Xie, R., Liu, Z., Sun, M., Zhou, J., 2024. AgentVerse:
Facilitating multi-agent collaboration and exploring emergent behaviors. In: The
Twelfth International Conference on Learning Representations.

Chen, Z., Zhou, K., Zhang, B., Gong, Z., Zhao, X., Wen, J.R., 2023. ChatCoT: Tool-
augmented chain-of-thought reasoning on chat-based large language models. In:
Findings of the Association for Computational Linguistics. EMNLP 2023, Association
for Computational Linguistics, Singapore, pp. 14777–14790.

Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H., Kaiser, L., Plappert, M.,
Tworek, J., Hilton, J., Nakano, R., Hesse, C., Schulman, J., 2021. Training verifiers
to solve math word problems. arXiv Preprint, arXiv:2110.14168.

Devlin, J., Chang, M.W., Lee, K., Toutanova, K., 2019. BERT: Pre-training of deep
bidirectional transformers for language understanding. In: Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers).
Association for Computational Linguistics, pp. 4171–4186.

Du, Y., Li, S., Torralba, A., Tenenbaum, J.B., Mordatch, I., 2024. Improving factuality
and reasoning in language models through multiagent debate. In: Proceedings of
the 41st International Conference on Machine Learning. In: Proceedings of Machine
Learning Research, vol. 235, PMLR, pp. 11733–11763.

Guo, T., Chen, X., Wang, Y., Chang, R., Pei, S., Chawla, N.V., Wiest, O., Zhang, X., 2024.
Large language model based multi-agents: A survey of progress and challenges.
In: Proceedings of the Thirty-Third International Joint Conference on Artificial
Intelligence. IJCAI-24, International Joint Conferences on Artificial Intelligence
Organization, pp. 8048–8057.

Hong, S., Zhuge, M., Chen, J., Zheng, X., Cheng, Y., Wang, J., Zhang, C., Wang, Z.,
Yau, S.K.S., Lin, Z., Zhou, L., Ran, C., Xiao, L., Wu, C., Schmidhuber, J., 2024.
MetaGPT: Meta programming for a multi-agent collaborative framework. In: The
Twelfth International Conference on Learning Representations.

Irving, G., Christiano, P., Amodei, D., 2018. AI safety via debate. arXiv Preprint,
arXiv:1805.00899.

Li, G., Hammoud, H., Itani, H., Khizbullin, D., Ghanem, B., 2023. CAMEL: Communica-
tive agents for "mind" exploration of large language model society. In: Advances
in Neural Information Processing Systems, vol. 36, Curran Associates, Inc., pp.
51991–52008.
52 
Ling, W., Yogatama, D., Dyer, C., Blunsom, P., 2017. Program induction by rationale
generation: Learning to solve and explain algebraic word problems. In: Proceedings
of the 55th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers). Association for Computational Linguistics, pp. 158–167.

Madaan, A., Tandon, N., Gupta, P., Hallinan, S., Gao, L., Wiegreffe, S., Alon, U.,
Dziri, N., Prabhumoye, S., Yang, Y., Gupta, S., Majumder, B.P., Hermann, K.,
Welleck, S., Yazdanbakhsh, A., Clark, P., 2023. Self-refine: Iterative refinement
with self-feedback. In: Advances in Neural Information Processing Systems, vol.
36, Curran Associates, Inc., pp. 46534–46594.

Miao, N., Teh, Y.W., Rainforth, T., 2024. SelfCheck: Using LLMs to zero-shot check their
own step-by-step reasoning. In: The Twelfth International Conference on Learning
Representations.

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C., Mishkin, P., Zhang, C.,
Agarwal, S., Slama, K., Ray, A., Schulman, J., Hilton, J., Kelton, F., Miller, L.,
Simens, M., Askell, A., Welinder, P., Christiano, P.F., Leike, J., Lowe, R., 2022.
Training language models to follow instructions with human feedback. In: Advances
in Neural Information Processing Systems, vol. 35, Curran Associates, Inc., pp.
27730–27744.

Press, O., Zhang, M., Min, S., Schmidt, L., Smith, N., Lewis, M., 2023. Measuring and
narrowing the compositionality gap in language models. In: Findings of the Asso-
ciation for Computational Linguistics. EMNLP 2023, Association for Computational
Linguistics, Singapore, pp. 5687–5711.

Radford, A., Narasimhan, K., 2018. Improving language understanding by generative
pre-training. URL: https://cdn.openai.com/research-covers/language-unsupervised/
language_understanding_paper.pdf. (Accessed 06 December 2024).

Radford, A., Wu, J., Child, R., et al., 2019. Language models are unsupervised multitask
learners. OpenAI Blog 1 (8), URL: https://cdn.openai.com/better-language-models/
language_models_are_unsupervised_multitask_learners.pdf. (Accessed 06 December
2024).

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li, W.,
Liu, P.J., 2020. Exploring the limits of transfer learning with a unified text-to-text
transformer. J. Mach. Learn. Res. 21 (140), 1–67.

Shinn, N., Cassano, F., Gopinath, A., Narasimhan, K., Yao, S., 2023. Reflexion: language
agents with verbal reinforcement learning. In: Advances in Neural Information
Processing Systems, vol. 36, Curran Associates, Inc., pp. 8634–8652.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., et al., 2014. Dropout: A simple
way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15 (56),
1929–1958.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L.u.,
Polosukhin, I., 2017. Attention is all you need. In: Advances in Neural Information
Processing Systems, vol. 30, Curran Associates, Inc..

Wang, L., Ma, C., Feng, X., Zhang, Z., Yang, H., Zhang, J., Chen, Z., Tang, J., Chen, X.,
Lin, Y., Zhao, W.X., Wei, Z., Wen, J., 2024. A survey on large language model
based autonomous agents. Front. Comput. Sci. (ISSN: 2095-2236) 18 (6).

Wei, J., Bosma, M., Zhao, V., Guu, K., Yu, A.W., Lester, B., Du, N., Dai, A.M.,
Le, Q.V., 2022a. Finetuned language models are zero-shot learners. In: International
Conference on Learning Representations.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., ichter, b., Xia, F., Chi, E., Le, Q.V.,
Zhou, D., 2022b. Chain-of-thought prompting elicits reasoning in large language
models. In: Advances in Neural Information Processing Systems, vol. 35, Curran
Associates, Inc., pp. 24824–24837.

Xi, Z., Chen, W., Guo, X., He, W., Ding, Y., Hong, B., Zhang, M., Wang, J., Jin, S.,
Zhou, E., Zheng, R., Fan, X., Wang, X., Xiong, L., Zhou, Y., Wang, W., Jiang, C.,
Zou, Y., Liu, X., Yin, Z., Dou, S., Weng, R., Cheng, W., Zhang, Q., Qin, W.,
Zheng, Y., Qiu, X., Huang, X., Gui, T., 2023. The rise and potential of large language
model based agents: A survey. arXiv Preprint, arXiv:2309.07864.

http://refhub.elsevier.com/S2666-6510(25)00001-4/sb1
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb1
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb1
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb1
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb1
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb2
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb2
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb2
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb2
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb2
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb2
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb2
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb2
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb2
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb2
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb2
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb2
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb2
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb3
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb3
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb3
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb3
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb3
http://arxiv.org/abs/2402.06634
http://arxiv.org/abs/2308.01552
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb6
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb6
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb6
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb6
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb6
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb6
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb6
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb7
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb7
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb7
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb7
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb7
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb7
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb7
http://arxiv.org/abs/2110.14168
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb9
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb9
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb9
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb9
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb9
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb9
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb9
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb9
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb9
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb10
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb10
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb10
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb10
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb10
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb10
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb10
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb11
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb11
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb11
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb11
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb11
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb11
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb11
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb11
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb11
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb12
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb12
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb12
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb12
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb12
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb12
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb12
http://arxiv.org/abs/1805.00899
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb14
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb14
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb14
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb14
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb14
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb14
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb14
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb15
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb15
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb15
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb15
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb15
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb15
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb15
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb16
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb16
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb16
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb16
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb16
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb16
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb16
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb16
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb16
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb17
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb17
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb17
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb17
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb17
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb18
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb18
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb18
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb18
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb18
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb18
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb18
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb18
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb18
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb18
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb18
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb19
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb19
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb19
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb19
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb19
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb19
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb19
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb22
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb22
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb22
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb22
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb22
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb23
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb23
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb23
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb23
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb23
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb24
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb24
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb24
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb24
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb24
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb25
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb25
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb25
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb25
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb25
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb26
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb26
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb26
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb26
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb26
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb27
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb27
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb27
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb27
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb27
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb28
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb28
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb28
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb28
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb28
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb28
http://refhub.elsevier.com/S2666-6510(25)00001-4/sb28
http://arxiv.org/abs/2309.07864

	ChatLLM network: More brains, more intelligence
	Introduction
	Related work
	Large Language Models
	Collaboration for LLM-based agents
	Improving Language Models via Feedback

	ChatLLM Network
	Network Architecture
	Forward-aggregation Mechanism
	Language Based Backpropagation Algorithm
	Dropout Mechanism
	Network Optimization

	Experiments
	Digital Mode Classification
	Sentiment Reversal Experiment
	Arithmetic Reasoning Experiment

	Limitations
	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References


